Localization of 3d Near-field Source Using the Aperture Extension Method and Nonuni- Form Cross Array
نویسندگان
چکیده
Depending on the aperture extension (AE), a high performance three-dimensional (3D) near-field (NF) source localization algorithm is proposed with the nonuniform linear array (NLA). The proposed algorithm first generates some fictitious sensors to extend the array aperture by constructing a new Toeplitz matrix, and then obtains a two-dimensional (2D) covariance matrix which only contains the elevation angle and range parameters, and another 3D covariance matrix which contains the elevation/azimuth angle and range parameters. Then based on the 2D covariance matrix, both the elevation angle and range parameters are estimated by using the NLA along the Z axis. With the estimates of both the elevation angle and range parameters and combining the 3D covariance matrix, the estimates of the azimuth angle parameters are obtained using the NLA along the Y axis. The proposed algorithm has four main merits: i) unlike some classical NF source localization algorithms, the quarter-wavelength sensor spacing constraint is not required and more sources can be located simultaneously by the proposed algorithm; ii) the 3D parameters of the proposed algorithm are paired automatically; iii) the 3D search required in conventional 3D multiple signal classification (MUSIC) algorithm is replaced with only one-dimensional (1D) search, and thus the computational burden is reduced; iv) the proposed algorithm gains superior parameter estimation accuracy and resolution. Received 13 July 2013, Accepted 14 October 2013, Scheduled 18 October 2013 * Corresponding author: Jia-Jia Jiang ([email protected]).
منابع مشابه
4D Near-Field Source Localization Using Cumulant
This paper proposes a new cumulant-based algorithm to jointly estimate four-dimensional (4D) source parameters of multiple near-field narrowband sources. Firstly, this approach proposes a new cross-array, and constructs five high-dimensional Toeplitz matrices using the fourth-order cumulants of some properly chosen sensor outputs; secondly, it forms a parallel factor (PARAFAC) model in the cumu...
متن کاملA Robust Extrapolation Method for Curtailed Aperture Reconstruction in Acoustic Imaging
Acoustic Imaging based sound localization using microphone array is a challenging task in digital-signal processing. Discrete Fourier transform (DFT) based near-field acoustical holography (NAH) is an important acoustical technique for sound source localization and provide an efficient solution to the ill-posed problem. However, in practice, due to the usage of small curtailed aperture and its ...
متن کاملThe impact of wind-generated bubble layer on matched field sound source localization in shallow water (Research Article)
This paper investigates the effect of the wind-generated bubble layer on the underwater sound source localization in the Persian Gulf shallow-water environment through computer simulation and the matched field processing technique. An underwater sound source of 2-10 kHz located at depths of 10, 45, and 75 m was considered at a distance of 4 km from a linear vertical receiver array. The estimati...
متن کاملLocalizing Acoustic Touch Impacts using Zip-stuffing in Complex k-space Domain
Visualizing sound and noise often help us to determine an appropriate control over the source localization. Near-field acoustic holography (NAH) is a powerful tool for the ill-posed problem. However, in practice, due to the small finite aperture size, the discrete Fourier transform, FFT based NAH couldn’t predict the activeregion-of-interest (AROI) over the edges of the plane. Theoretically few...
متن کاملPassive Acoustic Source Localization at a Low Sampling Rate Based on a Five-Element Cross Microphone Array
Accurate acoustic source localization at a low sampling rate (less than 10 kHz) is still a challenging problem for small portable systems, especially for a multitasking micro-embedded system. A modification of the generalized cross-correlation (GCC) method with the up-sampling (US) theory is proposed and defined as the US-GCC method, which can improve the accuracy of the time delay of arrival (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013